

1st International Congress of Chinese Nephrologists (ICCN 2015)

11-13 December 2015, Hong Kong Convention and Exhibition Centre

Glomerular Diseases: IgA Nephropathy in Elderly

Qi Qian, MD Professor of Medicine Professor of Physiology Mayo Clinic, Rochester December 12, 2015

> Division of NEPHROLOGY & HYPERTENSION

Financial Disclosure: None

Objectives:

To examine:

- 1. Changing healthcare landscape: Aging population
- 2. Elderly glomerular diseases: Overview
- 3. IgA nephropathy in elderly (Europe/U.S and Asia)

The rise of the nation state, the steam engine, electricity, the advent of the social safety net, the personal computer, the internet (social media), and ---

- 1. Vaccination
- 2. Nutrition
- 3. Antiseptics
- 4. Antibiotics
- 5. Advances in medicine

Barry Marshall and Robin Warren

MAYO CLINIC

阮

Chinese Population Aging and the Elderly Status of Blue Book. China Society Press, 2010

CENTERS FOR DISEASE CONTROL, U.S. LIFE TABLES

>90% healthcare cost fells in the last 2 years of life

Elderly glomerular disease: diagnosis and treatment

Diagnosis and Treatment of Glomerular Diseases in Elderly Patients

Qi Qian and Samih H. Nasr

MAYO

CLINIC

Vol 21, No 2 (March), 2014: pp 228-246

- Aging is associated with progressive decline in kidney reserve
- 30% of the glomeruli are sclerotic in healthy individuals by age 75 yrs
- Renal inulin clearance drops by ~ half (from 123 to 65 mL/min/1.73m²) in healthy adults 20-29 yrs and >80 yrs.

What types of glomerular diseases in elderly?

Secondary glomerular dz in majority of the cases: --- chronic HTN, DM and glomerular ischemia Primary glomerular dz: relatively less.

The spectrum of biopsy-proven kidney diseases in elderly Chinese patients

- N=851 native kidney biopsy, age ≥65 (<u>3% of all bx</u>)
- N= 28,574 younger adults, age 18-64
- Single-center (2003-2012)
- <u>Primary GN: 53.9%;</u> 2^{ndary} GN: 36.5%
- <u>MN 28.8%, DN 9.8%,</u> IgAN 9.6%, vasculitis 6.8%
- More MN, DN, vasculitis and amyloidosis than young adults

Nephrol Dial Transplant (2014) 29: 2251-2259 doi: 10.1093/ndt/gfu239 Advance Access publication 17 July 2014

Elderly (≥65 yrs): 3% of all bx

Nephrol Dial Transplant (2014) 29: 2251–2259 doi: 10.1093/ndt/gfu239 Advance Access publication 17 July 2014

Diagnostic kidney biopsy in elderly?

A bias toward limited diagnostic investigations (biopsy) based on age alone -

Pathologically, in addition to features of specific glomerular diseases, kidney biopsy from elderly patients often shows aging-related features including varying degrees of background glomerulosclerosis, tubular atrophy, interstitial fibrosis, arterial sclerosis, and arteriolar hyalinosis. Distinguishing a newly developed glomerulopathy from underlying age-associated kidney senescence can, at times, be challenging.

Renal biopsy in patients aged 80 years and older: a single-center experience in Japan.

N=73 patients aged \geq 80 years N=128 patients aged 70 - 79 years. N=172 patients aged 60 - 69 years

RESULTS:

Histological diagnoses modified treatment in 57 cases (78.1%). There were no propsy-related serious complications.

There were statistically significant differences in the disease spectrum between the very elderly and control groups (ages: 60-79 yrs).

CONCLUSIONS: Histological observations are useful aids in estimating the prognosis and therapy in the very elderly.

Clinical Nephrology 77(6):461-7. 2012

Renal biopsy in the very elderly (USA).

N=235 in patients aged \geq 80 yr. N=264 patients aged 60 to 69 yr.

RESULTS:

Biopsy indications: AKI 46.4%, progressive kidney injury 23.8%, NS 13.2%, NS with AKI 9.4%, and isolated proteinuria 5.5%.

Pauci-immune GN was the most frequent diagnosis (19%), FSGS due to HTN (7.6%), hypertensive nephrosclerosis (7.1%), IgAN (7.1%) and MN (7.1%).

In \geq 80 yr, pauci-immune GN to be more frequent (P<0.001), DN (P<0.001) and MN (P<0.05) less frequent in the very elderly.

No increase in Bx complications Diagnostic information modified treatment in 67% of elderly.

CONCLUSIONS: Renal biopsy in very elderly patients is a valuable diagnostic tool that should be offered in clinical settings with maximal potential benefit.

www.sin-italy.org/jnonline - www.jnephrol.com

Kidney biopsy in the elderly

Italian study: 2005-2009

DEMOGRAPHIC AND CLINICAL DATA FOR PATIENTS

		Age ≤60 years N=387	Age >60 years N=109	p value
Age mean ± 2SD		38 ± 27	68 ± 11	0.000
Range		(4-60)	(61-86)	
Sex (M/F)		232/156	70/40	ns
POSTBIOPSY COMPLICA	TIONS IN YOUNG AND	ELDERLY PATIENTS		
	Age ≤60 years		Age >60	years
	Number (n=388)	%	Number (n=110)	%
Perinephric hematoma	39	10.1	10	9.1
Arteriovenous fistula	5	1.3	0	0.0
Gross hematuria	0	0.0	1	0.9
Muscular hematoma	2	0.5	0	0.0
Total	46	11.9	11	10.0
Hypertension		35.8%	00.7%	0.000
Neoplasm		1.6%	4.8%	0.003

Kidney biopsy is safe in elderly

Histology is important

MAYO CLINIC

- to characterize the glomerular diseases
- to direct the best therapeutic strategies

Parrish AE: Complications of percutaneous renal biopsy: A review of 37 years' experience. *Clin Nephrol* 38: 135–141, 1992

Renal biopsy-related complications in the elderly are shown in Table 5. Of these 48 cases, minor bleeding complications occurred in 43 cases (5.05%). Major complications occurred in five patients (0.59%), who required a blood transfusion; no other invasive intervention procedures were required, and no patients died because of the renal biopsies. The incidence of major complications in 3948 patients aged 18–64 years was 0.2% (8 of 3498), including six cases of gross hematuria and two cases of hematoma. In these eight patients, blood transfusion was needed in seven cases, and radiologic embolization

Table 5. Renal biopsy-related bleeding complications in the elderly (n = 851)

Biopsy-related complications	Minor		Major		Total	
	n	%	n	%	n	%
Hematoma	6	0.71	3	0.35	10	1.18
Gross hematuria	36	4.23	2	0.24	38	4.47
Both	1	0.12	0	0.00	1	0.12
Total	43	5.05	5	0.59	48	5.64

The percentages represent the incidence of complications in all 851 elderly patients.

Nephrol Dial Transplant (2014) 29: 2251–2259 doi: 10.1093/ndt/gfu239 Advance Access publication 17 July 2014

What about treatment for elderly?

- Age-related decline in the capacity of drug metabolism and excretion
- Ongoing loss in <u>muscle mass, deconditioning and</u> <u>increase in frailty</u> = a seemingly near normal s. Cr. In reality, moderate-to-severe loss of kidney function. Always get eGFR or GFR
- Age alone should not be used against initiation of treatment.

Advances in Chronic Kidney Disease, Vol 21, No 2 (March), 2014: pp 228-246

Nephrol Dial Transplant (2014) 0: 1–8 doi: 10.1093/ndt/gfu070

Original Article

Prescription of potentially inappropriate medications to elderly hemodialysis patients: prevalence and predictors

Naoya Kondo¹, Fumiaki Nakamura², Shin Yamazaki¹, Yosuke Yamamoto¹, Tadao Akizawa³, Takashi Akiba⁴, Akira Saito⁵, Kiyoshi Kurokawa⁶ and Shunichi Fukuhara^{1,7,8}

¹Departmen Public Healt University S Medical Uni

Fukushima

- HD patients
- N=1,367, age ≥65
- 2002-2008, cross sectional study
- Kanagawa, J 57% had one potentially inappropriate medication

h, Kyoto, Japan, ²Department of y, Department of Medicine, Showa Iney Center, Tokyo Women's i University School of Medicine, arch in Clinical Evaluative Science, on Research, Tokyo, Japan

Nephrol Dial Transplant (2014) 0: 1-8

OR (95% CI)

Sex	female	Reference
	male 🔶	1.02 (0.80, 1.30)
Primary cause of ESRD	non-DM 🔶	Reference
	рм 🔶	1.14 (0.87, 1.51)
Age	65-69	Reference
	70–74	0.93 (0.70, 1.24)
	75-79	1.03 (0.74, 1.44)
	80-84	1.29 (0.84, 2.00)
	≥85 -	1.27 (0.74, 2.19)
Vintage	<1 +	Reference
	1-5	1.58 (1.15, 2.17)
	>5	- 1.77 (1.28, 2.44)
Number of comorbidities	o 🛉	Reference
	1-2	1.18 (0.69, 2.00)
	3-4	- 1.40 (0.82, 2.38)
	≥5	- 1.50 (0.86, 2.61)
Number of medications	<6	Reference
	6-7 -	2.56 (1.88, 3.49)
	8-9	3.97 (2.89, 5.45)
	≥10	5.81 (4.15, 8.13)
Past history of depression	No	Reference
	Yes	• 2.57 (0.78, 8.53)
Dependency in ADL	Low	Reference
	High 🔶	0.56 (0.39, 0.82)
_iving alone	No	Reference
	Yes 🔶	0.92 (0.62, 1.36)
	0 1	3 5 7 9
	* 1	Nephro

splant (2014) 0: 1–8

Key Points

- 1. Glomerular diseases are common in the elderly.
- 2. Kidney biopsy for elderly is safe and can be clinically informative.
- 3. Therapeutic recommendations for elderly are mostly extrapolated from younger adults --- need more studies.
- 4. Treatment for elderly with glomerular diseases should be individualized. ---- General health, cognitive function, competing comorbidities, life expectancy and patient's preference should all be taken into consideration.

Objectives:

To examine:

MAYO

- 1. Changing healthcare landscape: Aging population
- 2. Elderly glomerular diseases: Overview

In-Depth Topic Review

Am J Nephrol 2013;38:241–252 DOI: <u>10.1159/000354646</u> Received: May 7, 2013 Accepted: July 19, 2013 Published online: September 10, 2013

Aging Promotes Progression of IgA Nephropathy: A Systematic Review and Meta-Analysis

Zhi-Yu Duan Guang-Yan Cai Yi-Zhi Chen Shuang Liang Shu-Wen Liu Jie Wu Qiang Qiu Shu-Peng Lin Xue-Guang Zhang Xiang-Mei Chen Department of Nephrology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, PR China

MAYO CLINIC

Am J Nephrol 2013;38:241-252

Table 1. Main characteristics of the included studies

Study	Design	Sample size	Nation- ality	Males, %	Age, years	Exposure definition ¹ , years of age	Outcome definition	Events	Follow-up
Goto [7]	cohort study	2,283	Japanese	48.7	31.2	≥60	ESRD: beginning of chronic hemodialysis	252	87 months
Kuhara [18]	cohort study	291	Japanese	45.4	54.6±2.8	≥50	CRF	24	older group: 4.9±2.9 years
Takeda [20]	cohort study	117	Japanese	57.3	NS	≥50	CRF	16	3.8 years
Frimat [13]	cohort study	129	French	81.4	38.4	≥50	ESRD, required dialysis or kidney transplantation	22	41 months
Soleymanian [12]	cohort study	70	Iranian	35.7	39±12.1	≥50	ESRD, need for renal replacement	10	23.5 months
Yang [21]	cohort study	152	Chinese	56.6	older group: 65.2±4.7 control group: 34.2±9.4	≥60	ESRD	5	34.6±33.3 months
Ferro [22]	cohort study	392	Italian	58.2	53	≥65	CRF	10	NS
Rivera [23]	cohort study	total: 9,378	Spanish	60.4	NS	≥65	CRF	148	NS
Yokoyama [24]	cohort study	total: 3,109	Japanese	50.1	NS	≥65	CKD stage 5	48	NS

CKD = Chronic kidney disease; CRF = chronic renal failure; NS = without giving specific figure.

¹ Old age designated as older than 50 years.

MAYO CLINIC **Fig. 9.** Funnel plot of 9 trials on the effect of aging on the progression of IgAN to ESRD.

Am J Nephrol 2013;38:241-252

Frimat et al.

- N= 33 patients with age \geq 50 and
- N= 96 younger adults with ages 15-64.
- Multi-center.
- A higher blood pressure and proteinuria in the elderly patients (no specific treatment information was provided)
- Did not use the Oxford classification of IgAN.
- Only 16 patients had histological information.
- Vasculopathy was the single histological difference between the two groups
- No outcome difference in terms of end-stage renal failure

Nephrol. Dial. Transplant. 1996; 11: 1043-7.

Mayo Study (1994-2013):

This single-centre cohort study was designed to compare elderly and younger adults with IgAN. It involved 45 elderly (age ≥ 65 years) and <u>162 younger</u> adults (age 18–64 years) with a median follow-up of 36 ± 42.3 and 55.4 ± 46.4 months, respectively, which constitutes the largest study in a Western country and the only study from the United States.

Nephrology. 2015 Jun;20(6):419-25.

	ropathy at the time of kidney biopsy						
	Clinical features	Elderly $(n = 45)$	Adult (n = 162)	P-value			
	Age, year Mala gander	71±5	42±13	0.07			
	Male gender	31 (69%)	112 (69%)	0.97			
	Race, White BMI, kg/m ²	38 (84%) 30.1 ± 5.7	127 (78%) 30.1 ± 15.3	0.37 0.98			
Г	Charlson Comobidity Index score	5.5 ± 2.6	1.8 ± 2.4	< 0.001			
L	Onset of the disease (elevation of	0.7 ± 0.5	0.4 ± 0.2	0.08			
	serum creatinine haematuria or proteinuria), month	0.7 ± 0.5	0.110.2	0.00			
Г	Chronic hypertension	28 (62%)	44 (27%)	<0.001			
	Hypertension at diagnosis	19 (42%)	47 (29%)	0.09			
	SBP, mmHg	138 ± 22	130 ± 21	0.06			
_	DBP, mmHg	73±14	89 ± 12	0.03			
L	Pulse pressure, mmHg	65 ± 17	51 ± 15	<0.001			
	Number of patients on antihypertensive	36 (80%)	138 (85%)	0.40			
_	Serum creatinine, mg/dL	2.6 ± 1.3	2.2 ± 1.5	0.07			
L	GFR, mL/min per 1.73 m ²	29 ± 17	51 ± 30	<0.001			
	GFR at diagnosis (mL/min per 1.73 m ²)			0.003			
	≥90	4 (9)	24 (15)				
	60-89	1 (2)	36 (22)				
	30–59	15 (33)	55 (33)				
	15–29	18 (40)	32 (20)				
_	<15	7 (16)	16 (10)				
	Haemoglobin, g/dL	11.1 ± 2.3	12.7 ± 2.1	<0.001			
	Serum albumin, mg/dL	3.6±0.6	3.8 ± 0.7	0.08			
	24 h urine protein, mg	2428 ± 3221	2862 ± 3823	0.46			
	24 h urine protein level	04/44 (54%)	(7) (4 (400))	0.54			
	<1000 mg	21/41 (51%)	67/161 (42%)				
	1000–3500 mg	11/41 (27%)	51/161 (32%)				
	>3500 mg	9/41 (22%)	43/161 (27%)	0.62			
	Total cholesterol, mg/dL	197 ± 66	204 ± 70	0.62			
	Coexist positive ANCA	3 (6%)	8 (5%)	0.65			
	Total MEST score Total MEST score ≥ 2	2.0 ± 1.1	1.9 ± 1.0	0.34			
		28 (62%)	98 (60%)	0.83			
	Absolute renal risk score (ARR)† ARR = 0	0 (20)	22 (20)	0.68			
	ARR = 0 ARR = 1	9 (20)	32 (20)				
	ARR = 1 ARR = 2	14 (31)	45 (28)	Neph			
	ARR = 2 ARR = 3	13 (29) 9 (20)	61 (38) 24 (15)	ivehi			
	///// = 5	2 (20)	24(13)				

MAYO CLINIC

员

 Table 1 Clinical features between elderly and adult patients with IgA nephropathy at the time of kidney biopsy

Elderly at the time of biopsy:

- More comorbidities
- More HTN
- Lower eGFR
- Lower HGB

Nephrology. 2015 Jun;20(6):419-25.

©2011 MFMER | slide-3

 Table 2
 Pathological features between elderly and adults patients with IgA nephropathy

Histological findings	Elderly	Adult	P-value
0-	(n = 45)	(<i>n</i> = 162)	
Mesengial hypercellurity (M1)	41/43 (95%)	141/162 (87%)	0.17
Endocapillary proliferation (E1)	7/43 (16%)	18/162 (11%)	0.36
Segmental glomerularosclerosis (S1)	19/43 (44%)	88/162 (54%)	0.25
Tubular atrophy/interstitial fibrosis	24/44 (55%)	119/161 (74%)	0.04
то	16/44 (36%)	31/161 (19%)	
T1	4/44 (9%)	11/161 (7%)	
T2	2.0 ± 1.1	1.9 ± 1.0	
Total MEST score			0.34
MEST score			0.51
MEST = 0	2 (4)	11 (7)	
MEST = 1	15 (33)	53 (33)	
MEST = 2	11 (24)	56 (35)	
MEST = 3	14 (31)	33 (20)	
MEST = 4	3 (7)	9 (6)	
MEST = 5	0 (0)	O (O)	
Global sclerosis	35/43 (81%)	124/162 (77%)	0.49
% global sclerosis	27 ± 24	25 ± 25	0.68
% segmental sclerosis	8.6 ± 13.6	8.7 ± 11.3	0.97
Cellular/fibrocellular crescents	6/42 (14%)	31/162 (19%)	0.47
% cellular/fibrocellular crescents	3.2 ± 11	3±9	0.83
Fibrinoid necrosis	2/42 (5%)	12/162 (7%)	0.54
% fibrinoid necrosis	1.8 ± 10.1	0.7 ± 2.8	0.47
Arterial and/or arteriolar sclerosis			< 0.001
Mild	14/44 (32%)	55/162 <mark>(</mark> 34%)	
Moderate	11/44 (25%)	34/162 (21%)	
Severe	6/44 (14%)	0/162 (0%)	
Arterial hyalinosis			0.40
Mild	11/44 (25%)	25/162 (15%)	
Moderate	4/44 (9%)	15/162 (9%)	
Severe	2/44 (5%)	4/162 (2%)	
Coexist diabetes nephropathy	3/45 (7%)	4/162 (2%)	0.17
Coexist acute tubular necrosis	3/45 (7%)	6/162 (4%)	0.41

MA CLI Pathological features:

More

- interstitial fibrosis
- tubular atrophy
- vascular changes

Nephrology. 2015 Jun;20(6):419-25.

	Elderly	Adult	P-value
	(<i>n</i> = 45)	(<i>n</i> = 162)	
Treatment			
ACEI or ARB	15 (33%)	70 (43%)	0.23
Immunosuppression	14(31%)	54(28%)	0.66
Steroid	14 (31%)	40 (25%)	0.39
Immunosupression other than steroid	4 (9)	22 (14)	0.21
Cyclophosphamide	3 (7%)	4 (2%)	0.17
Azathioprine	0 (0%)	2 (1%)	0.45
Cyclosporine	0 (0%)	4 (2%)	0.29
Mycophenolate mofetil	1 (2%)	12 (7%)	0.20
Fish oil	8 (18%)	52 (32%)	0.06
Treatment response at 6 months			
SBP, mmHg	159 ± 25	149 ± 26	0.06
DBP, mmHg	84 ± 9	90±16	0.02
Pulse pressure, mmHg	75 ± 21	59 ± 17	0.001
Number of patients on	35 (78%)	106 (65%)	0.12
antihypertensive meds			
Serum creatinine, mg/dL	2.3 ± 2.2	2.1 ± 1.5	0.60
GFR, mL/min per 1.73 m ²	38±19	54±31	0.023

 Table 3 Treatment and treatment response
 between elderly and adult with

 IgA nephropathy at 6 months

MAYO CLINIC

Nephrology. 2015 Jun;20(6):419-25.

Fig. 1 The eGFR (CKD-EPI) decline after IgAN diagnosis was faster in younger (a) than in elderly adults (b) (P = 0.04). eGFR, estimated glomerular filtration rate; IgAN, IgA nephropathy.

Kaplan-Meier curve for survival analysis

Nephrology. 2015 Jun;20(6):419-25.

2011 MFMER | slide-3

Beijing Da Xue Xue Bao. 2008 Aug 18;40(4):401-4.

[Clinicopathologic characteristics and outcomes of IgA nephropathy in elder patients].

[Article in Chinese] Yang YR1, Lv JC, Jiang L, Zhang YM, Song YH, Li RS, Zhang H. 1Department of Nephrology, Peking University First Hospital, Beijing, China.

Single center, retrospective (<u>1993-2007</u>) N=70 age>60 N=82 age <60

RESULTS:

Elder group patients had

- higher BP, sCr, cholesterol, 24 hr urinary protein, CKD progression.
- Renal pathology: chronic lesions: glomerular sclerosis, renal tubule atrophy/interstitial fibrosis and arteriolosclerosis.
- the 3-year and the 5-year <u>renal survival</u> rates for <u>elder group were 74.6% and 62.2%</u>, respectively, which were lower than those of non-elder group (100% and 92.9%, P=0.002).

1 老年组和非老年组 IgAN 患者预后的 Kaplan-Meier 生存分析

Figure 1 Kaplan-Meier renal survival curves of patients with IgAN in elder and non-elder group

CONCLUSION: Elder patients with IgA nephropathy were more likely to have HTN, hyperlipidemia, renal insufficiency and chronic pathologic lesions --- the risk factors for the patient's unfavorable prognosis.

Characteristics of IgA nephropathy in advanced-age patients

Yasuko Oshima · Takahito Moriyama · Mitsuyo Itabashi · Takashi Takei · Kosaku Nitta

600 IgAN cases 1992-2011

N=31, <u>Advanced-age group (AAG)</u> ≥60 years (5.2%) N=162, middle-age group (MAG) 40 - 59 years. N=407, young-age group (YAG) 20-39 years

RESULTS: in AAG

- MAP higher
- s.albumin, eGFR lower
- Interstitial fibrosis/tubular atrophy higher
- More ACEi/ARB tx
- Renal survival lower

MAP and proteinuria – predicted ESRD

Int Urol Nephrol 2014 DOI 10.1007/s11255-014-0872-1

CONCLUSIONS: AAG had lower renal function, high levels of proteinuria, severe interstitial change, and arteriolosclerosis. concomitant diseases, such as hypertension, dyslipidemia, and hyperuricemia.

Prognosis was poor, and >70 % developed ESRD within 20 years.

 \overline{f}

Conclusion:

Compare to younger adults, elderly IgAN patients show

- (1) a higher level of pre-existing comorbidity,
- (2) biopsy: more tubulointerstitial fibrosis and vasculopathy
- (3) progression: faster to renal failure
- (4) reduced patient survival despite similar treatment for IgAN.

Summary:

- 1. <u>Changing healthcare landscape</u>: aging burden
- <u>Elderly glomerular diseases</u>: diagnosis and treatment Diagnosis should be timely. <u>Kidney biopsy is safe</u>. Tx should be individualized
- 3. <u>Elderly IgAN in the Western countries and Asia</u>
- more common in Asia (2-3 fold more)
- A higher degree of comorbidity at the biopsy,
- Biopsy: higher degrees of interstitial fibrosis/tubular atrophy and vascular diseases
- faster renal disease progression
- IgAN in elderly is an independent risk factor for the decline in renal function and patient survival.

Thank You!

